RT8068A

3A, 1MHz, Synchronous Step-Down Converter

General Description

The RT8068A is a high efficiency synchronous, step-down DC-DC converter. It's input voltage range from 2.7 V to 5.5 V that provides an adjustable regulated output voltage from 0.6 V to V_{IN} while delivering up to 3 A of output current. The internal synchronous low on resistance power switches increase efficiency and eliminate the need for an external Schottky diode. The switching frequency is fixed internally at 1 MHz . The 100% duty cycle provides low dropout operation, hence extending battery life in portable systems. Current mode operation with internal compensation allows the transient response to be optimized over a wide range of loads and output capacitors. The RT8068A is available in WDFN-10L 3×3 and SOP-8 (Exposed Pad) packages.

Ordering Information

 RT8068A口-Package Type
QW : WDFN-10L 3x3 (W-Type)
SP : SOP-8 (Exposed Pad-Option 2)
_Lead Plating System
Z : ECO (Ecological Element with Halogen Free and Pb free)

Note :
Richtek products are :

- RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- Suitable for use in SnPb or Pb -free soldering processes.

Marking Information

RT8068AZQW

| 13 YM |
| ---: | :--- |
| DNN |\quad| 13 : Product Code |
| :--- |
| YMDNN : Date Code |

RT8068AZSP

RT8068A
ZSPYMDNN

RT8068AZSP : Product Code YMDNN : Date Code

Features

- High Efficiency : Up to 95\%
- Low $\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Internal Switches : $69 \mathrm{~m} \Omega / 49 \mathrm{~m} \Omega$ at V_{IN} = 5 V
- Fixed Frequency : 1MHz
- No Schottky Diode Required
- Internal Compensation
- 0.6V Reference Allows Low Output Voltage
- Low Dropout Operation : 100\% Duty Cycle
- OCP, UVP, OVP, OTP
- RoHS Compliant and Halogen Free

Applications

- Portable Instruments
- Battery Powered Equipment
- Notebook Computers
- Distrib uted Power Systems
- IP Phones
- Digital Cameras

Pin Configuration

WDFN-10L 3x3

Typical Application Circuit

Table 1. Recommended Component Selection

Vout (V)	$\mathrm{R}_{\mathrm{FB} 1}(\mathrm{k} \Omega$)	$\mathrm{R}_{\mathrm{FB} 2}(\mathrm{k} \Omega)$	$\mathrm{C}_{\text {FF }}(\mathrm{pF})$	$\mathrm{L}(\mu \mathrm{H})$	Cout ($\mu \mathrm{F}$)
3.3	229.5	51	22	2	22×2
2.5	161.5	51	22	2	22×2
1.8	102	51	22	1.5	22×2
1.5	76.5	51	22	1.5	22×2
1.2	51	51	22	1.5	22×2
1.0	34	51	22	1.5	22×2

Functional Pin Description

Pin No.		Pin	
WDFN-10L	SOP-8 (Exposed Pad)	Name	PX Function
$1,2,3$	1,2	SX	Switch node. Connect this pin to the inductor.
4	3	PGOOD	Power good indicator. This pin is an open drain logic output that is pulled to ground when the output voltage is less than 90\% of the target output voltage. Hysteresis = 5\%.
5	4	EN	Enable control. Pull high to turn on. Do not float.
6	5	FB	Feedback pin. This pin receives the feedback voltage from a resistive voltage divider connected across the output.
7	--	NC	No internal connection.
8	6	SVIN	Signal input pin. Decouple this pin to GND with at least 1 1μ F ceramic cap.
9,10	7,8	PVIN	Power input pin. Decouple this pin to GND with at least 4.7 ceramic cap.
11			
(Exposed Pad)	9 (Exposed Pad)	GND	Ground. The exposed pad must be soldered to a large PCB and connected to GND for maximum power dissipation.

Functional Block Diagram

Absolute Maximum Ratings (Note 1)

- Supply Input Voltage, PVIN, SVIN -0.3 V to 6.5 V
- LXPin
DC -0.3 V to 6.8 V
< 50ns -2.5 V to 9 V
- Other I/O Pin Voltage -0.3 V to 6.5 V
- Power Dissipation, $\mathrm{PD}_{\mathrm{D}} @ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
WDFN-10L 3×3 1.429W
SOP-8 (Exposed Pad) 1.333W
- Package Thermal Resistance (Note 2)
WDFN-10L $3 \times 3, \theta_{\mathrm{JA}}$ $70^{\circ} \mathrm{C} / \mathrm{W}$
WDFN-10L 3×3, θ_{Jc} $8.2^{\circ} \mathrm{C} / \mathrm{W}$
SOP-8 (Exposed Pad), θ_{JA} $75^{\circ} \mathrm{C} / \mathrm{W}$
SOP-8 (Exposed Pad), $\theta \mathrm{Jc}$ $15^{\circ} \mathrm{C} / \mathrm{W}$
- Lead Temperature (Soldering, 10 sec .) $260^{\circ} \mathrm{C}$
- Junction Temperature $150^{\circ} \mathrm{C}$
- Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$- ESD Susceptibility (Note 3)HBM (Human Body Model)2kV
MM (Machine Model) 200V
Recommended Operating Conditions (Note 4)
- Supply Input Voltage, PVIN, SVIN 2.7 V to 5.5 V
- Junction Temperature Range $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Electrical Characteristics

$\left(\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
Feedback Reference Voltage	$V_{\text {REF }}$		0.594	0.6	0.606	V
Feedback Leakage Current	IfB		--	0.1	0.4	$\mu \mathrm{A}$
DC Bias Current		Active , $\mathrm{V}_{\mathrm{FB}}=0.7 \mathrm{~V}$, not switching	--	110	140	$\mu \mathrm{A}$
		Shutdown	--	--	1	
Output Voltage Line Regulation		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \text { lout }=0 \mathrm{~A} \\ & \hline \end{aligned}$	--	0.3	--	\%/V
Output Voltage Load Regulation		(Note 5)	-1	--	1	\%
Switch Leakage Current			--	--	1	$\mu \mathrm{A}$
Switching Frequency			0.8	1	1.2	MHz
Switch On Resistance, High	RdS(ON)_P		--	69	--	$\mathrm{m} \Omega$
Switch On Resistance, Low	Rds(ON)_N		--	49	--	$\mathrm{m} \Omega$
P-MOSFET Current Limit	ILIM		4	--	--	A

Parameter		Symbol	Test Conditions	Min	Typ	Max	Unit	
Under Voltage Lockout Threshold		Vuvlo	VIN rising	2.2	2.4	2.6	V	
		VIN falling	2	2.2	2.4			
EN Input Threshold Voltage	Logic-High		V_{IH}		1.6	--	--	V
	Logic-Low	VIL		--	--	0.4		
EN Pull Low Resistance				--	500	--	$\mathrm{k} \Omega$	
Over Temperature Protection		TSD		--	150	--	${ }^{\circ} \mathrm{C}$	
Over Temperature Protection Hysteresis				--	20	--	${ }^{\circ} \mathrm{C}$	
Soft-Start Time		tss		500	--	--	$\mu \mathrm{s}$	
Vout Discharge Resistance				--	100	--	Ω	
Vout Over Voltage Protection (Latch-Off, Delay Time = 10 $\mu \mathrm{s}$)				115	120	130	\%	
Vout Under Voltage Lock Out (Latch-Off)				57	66	75	\%	
Power Good			Measured FB, With respect to VREF	85	90	--	\%	
Power Good Hysteresis				--	5	--	\%	

Note 1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions may affect device reliability.
Note 2. θ_{JA} is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ on a high effective thermal conductivity four-layer test board per JEDEC 51-7. θ_{Jc} is measured at the exposed pad of the package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Guarantee by design.

Typical Operating Characteristics

Efficiency vs. Load Current

Current Limit vs. Input Voltage

Efficiency vs. Load Current

Output Voltage vs. Output Current

Power On from V_{IN}

Power On from EN

Over Current Protection

Power Off from V_{IN}

Power Off from EN

Application Information

The RT8068A is a single-phase buck converter. It provides single feedback loop, current mode control with fast transient response. An internal 0.6 V reference allows the output voltage to be precisely regulated for low output voltage applications. A fixed switching frequency ($1 \mathrm{MHz} \mathrm{)}$ oscillator and internal compensation are integrated to minimize external component count. Protection features include over current protection, under voltage protection, over voltage protection and over temperature protection.

Output Voltage Setting

Connect a resistive voltage divider at the FB between Vout and GND to adjust the output voltage. The output voltage is set according to the following equation:

$$
V_{\text {OUT }}=V_{\mathrm{REF}} \times\left(1+\frac{\mathrm{R}_{\mathrm{FB} 1}}{\mathrm{R}_{\mathrm{FB} 2}}\right)
$$

where $\mathrm{V}_{\text {REF }}$ is 0.6 V (typ.).

Figure 1. Setting $\mathrm{V}_{\text {OUT }}$ with a Voltage Divider

Chip Enable and Disable

The EN pin allows for power sequencing between the controller bias voltage and another voltage rail. The RT8068A remains in shutdown if the EN pin is lower than 400 mV . When the EN pin rises above the V_{EN} trip point, the RT8068A begins a new initialization and soft-start cycle.

Internal Soft-Start

The RT8068A provides an internal soft-start function to prevent large inrush current and output voltage overshoot when the converter starts up. The soft-start (SS) automatically begins once the chip is enabled. During softstart, the internal soft-start capacitor becomes charged and generates a linear ramping up voltage across the capacitor. This voltage clamps the voltage at the FB pin, causing PWM pulse width to increase slowly and in turn reduce the output surge current. The internal 0.6 V reference takes over the loop control once the internal ramping-up voltage becomes higher than 0.6 V .

UVLO Protection

The RT8068A has input Under Voltage Lockout protection (UVLO). If the input voltage exceeds the UVLO rising threshold voltage (2.4 V typ.), the converter resets and prepares the PWM for operation. If the input voltage falls below the UVLO falling threshold voltage during normal operation, the device will stop switching. The UVLO rising and falling threshold voltage has a hysteresis to prevent noise-caused reset.

Inductor Selection

The switching frequency (on-time) and operating point (\% ripple or LIR) determine the inductor value as shown below:
$L=\frac{V_{\text {OUT }} \times\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{f_{\text {SW }} \times \operatorname{LIR} \times \operatorname{LOAD}(M A X) \times V_{\text {IN }}}$
where LIR is the ratio of the peak-to-peak ripple current to the average inductor current.

Find a low loss inductor having the lowest possible DC resistance that fits in the allotted dimensions. Ferrite cores are often the best choice, although powdered iron is inexpensive and can work well at 200 kHz . The core must be large enough not to saturate at the peak inductor current (IPEAK) :
$\operatorname{IPEAK}=\operatorname{LLOAD}(M A X)+\left(\frac{\operatorname{LIR}}{2} \times \operatorname{ILOAD}(\operatorname{MAX})\right)$
The calculation above serves as a general reference. To further improve transient response, the output inductor can be further reduced. This relation should be considered along with the selection of the output capacitor.

Input Capacitor Selection

High quality ceramic input decoupling capacitor, such as X5R or X7R, with values greater than $20 \mu \mathrm{~F}$ are recommended for the input capacitor. The X5R and X7R ceramic capacitors are usually selected for power regulator capacitors because the dielectric material has less capacitance variation and more temperature stability.

Voltage rating and current rating are the key parameters when selecting an input capacitor. Generally, selecting an input capacitor with voltage rating 1.5 times greater than the maximum input voltage is a conservatively safe design.

The input capacitor is used to supply the input RMS current, which can be approximately calculated using the following equation :
$I_{I N}$ RMS $=$ LLOAD $\times \sqrt{\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{VIN}} \times\left(1-\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{VIN}_{\text {IN }}}\right)}$
The next step is selecting a proper capacitor for RMS current rating. One good design is using more than one capacitor with low equivalent series resistance (ESR) in parallel to form a capacitor bank.

The input capacitance value determines the input ripple voltage of the regulator. The input voltage ripple can be approximately calculated using the following equation :
$\Delta \mathrm{V}_{\mathrm{IN}}=\frac{\operatorname{lout}(\mathrm{MAX}) \times 0.25}{\mathrm{C}_{\mathrm{IN}} \times \mathrm{ff}_{\mathrm{SW}}}$
For example, if IOUT_MAX $=3 \mathrm{~A}, \mathrm{C}_{\mathrm{IN}}=20 \mu \mathrm{~F}, \mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}$, the input voltage ripple will be 37.5 mV .

Output Capacitor Selection

The output capacitor and the inductor form a low pass filter in the buck topology. In steady state condition, the ripple current flowing into/out of the capacitor results in ripple voltage. The output voltage ripple (VP-p) can be calculated by the following equation :

$$
V_{P_{-} P}=\operatorname{LIR} \times \operatorname{ILOAD}(M A X) \times\left(E S R+\frac{1}{8 \times \operatorname{COUT} \times f_{S W}}\right)
$$

When load transient occurs, the output capacitor supplies the load current before the controller can respond. Therefore, the ESR will dominate the output voltage sag during load transient. The output voltage undershoot ($\mathrm{V}_{\mathrm{SAG}}$) can be calculated by the following equation :

VSAG $=\Delta$ LIOAD $\times E S R$
For a given output voltage sag specification, the ESR value can be determined.

Another parameter that has influence on the output voltage sag is the equivalent series inductance (ESL). The rapid change in load current results in di/dt during transient. Therefore, the ESL contributes to part of the voltage sag. Using a capacitor with low ESL can obtain better transient performance. Generally, using several capacitors connected in parallel can have better transient performance than using a single capacitor for the same total ESR.

Unlike the electrolytic capacitor, the ceramic capacitor has relatively low ESR and can reduce the voltage deviation
during load transient. However, the ceramic capacitor can only provide low capacitance value. Therefore, use a mixed combination of electrolytic capacitor and ceramic capacitor to obtain better transient performance.

Power Good Output (PGOOD)

PGOOD is an open-drain type output and requires a pullup resistor. PGOOD is actively held low in soft-start, standby, and shutdown. It is released when the output voltage rises above 90% of nominal regulation point. The PGOOD signal goes low if the output is turned off or is 10% below its nominal regulation point.

Under-Voltage Protection (UVP)

The output voltage can be continuously monitored for under voltage. When under-voltage protection is enabled, both UGATE and LGATE gate drivers will be forced low if the output is less than 66% of its set voltage threshold. The UVP will be ignored for at least 3 ms (typ.) after start up or a rising edge on the EN threshold. Toggle EN threshold or cycle $\mathrm{V}_{\mathbb{I N}}$ to reset the UVP fault latch and restart the controller.

Over-Voltage Protection (OVP)

The RT8068A is latched once OVP is triggered and can only be released by toggling EN threshold or cycling V_{IN}. There is a 10μ s delay built into the over-voltage protection circuit to prevent false transition.

Over-Current Protection (OCP)

The RT8068A provides over-current protection by detecting high side MOSFET peak inductor current. If the sensed peak inductor current is over the current limit threshold (4A typ.), the OCP will be triggered. When OCP is tripped, the RT8068A will keep the over current threshold level until the over current condition is removed.

Internal Output Voltage Discharge

An internal open-drain logic output is implemented on LX pin. During the conditions of OVP, UVP, OTP and enable low, the internal discharge path is activated and the left energy from output terminal is able to be released with an internal resistance about 100Ω to ground.

Thermal Shutdown (OTP)

The device implements an internal thermal shutdown function when the junction temperature exceeds $150^{\circ} \mathrm{C}$. The thermal shutdown forces the device to stop switching when the junction temperature exceeds the thermal shutdown threshold. Once the die temperature decreases below the hysteresis of $20^{\circ} \mathrm{C}$, the device reinstates the power up sequence.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :
$P_{D(\text { MAX })}=\left(T_{J(M A X)}-T_{A}\right) / \theta_{J A}$
where $T_{J_{(M A X)}}$ is the maximum junction temperature, T_{A} is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications, the maximum junction temperature is $125^{\circ} \mathrm{C}$ and T_{A} is the ambient temperature. The junction to ambient thermal resistance, θ_{JA}, is layout dependent. For SOP-8 (Exposed Pad) packages, the thermal resistance, θ_{JA}, is $75^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 four-layer thermal test board. For WDFN-10L 3×3 packages, the thermal resistance, θ_{JA}, is $70^{\circ} \mathrm{C} / \mathrm{W}$ on a standard JEDEC 51-7 four-layer thermal test board. The maximum power dissipation at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ can be calculated by the following formulas :
$P_{D(\text { MAX })}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(75^{\circ} \mathrm{C} / \mathrm{W}\right)=1.333 \mathrm{~W}$ for SOP-8 (Exposed Pad) package
$P_{D(\operatorname{MAX})}=\left(125^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}\right) /\left(70^{\circ} \mathrm{C} / \mathrm{W}\right)=1.429 \mathrm{~W}$ for WDFN-10L 3×3 package

The maximum power dissipation depends on the operating ambient temperature for fixed $\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}$ and thermal resistance, θ_{JA}. For the RT8068A package, the derating curves in Figure 2 allow the designer to see the effect of rising ambient temperature on the maximum power dissipation.

Figure 2. Derating Curve of Maximum Power Dissipation

Layout Considerations

Layout is very important in high frequency switching converter design. The PCB can radiate excessive noise and contribute to converter instability with improper layout. Certain points must be considered before starting a layout using the RT8068A.

- Make the traces of the main current paths as short and wide as possible.
- Put the input capacitor as close as possible to the device pins ($\mathrm{V}_{\mathbb{I N}}$ and GND).
- LX node encounters high frequency voltage swings so it should be kept in a small area. Keep sensitive components away from the LX node to prevent stray capacitive noise pick-up.
- Ensure all feedback network connections are short and direct. Place the feedback network as close to the chip as possible.
- The GND pin and Exposed Pad should be connected to a strong ground plane for heat sinking and noise protection.
- An example of PCB layout guide is shown in Figure 3. for reference.

The output capacitor must Input capacitor must be placed be placed near the IC. as close to the IC as possible.

Figure 3. PCB Layout Guide

Outline Dimension

DETAILA
Pin \#1 ID and Tie Bar Mark Options
Note : The configuration of the Pin \#1 identifier is optional, but must be located within the zone indicated.

Symbol	Dimensions In Millimeters		Dimensions In Inches					
	Min	Max	Min	Max				
A	0.700	0.800	0.028	0.031				
A1	0.000	0.050	0.000	0.002				
A3	0.175	0.250	0.007	0.010				
b	0.180	0.300	0.007	0.012				
D	2.950	3.050	0.116	0.120				
D2	2.300	2.650	0.091	0.104				
E	2.950	3.050	0.116	0.120				
E2	1.500	1.750	0.059	0.069				
e	0.500							0.020
L	0.350	0.450	0.014	0.018				

W-Type 10L DFN 3x3 Package

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
A	4.801	5.004	0.189	0.197
B	3.810	4.000	0.150	0.157
C	1.346	1.753	0.053	0.069
D	0.330	0.510	0.013	0.020
F	1.194	1.346	0.047	0.053
H	0.170	0.254	0.007	0.010
I	0.000	0.152	0.000	0.006
J	5.791	6.200	0.228	0.244
M	0.406	1.270	0.016	0.050
Option 1	X	2.000	2.300	0.079
	Y	2.000	2.300	0.079
Option 2	X	2.100	2.500	0.083
	Y	3.000	3.500	0.118

8-Lead SOP (Exposed Pad) Plastic Package

Richtek Technology Corporation

14F, No. 8, Tai Yuen $1^{\text {st }}$ Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789

Richtek products are sold by description only. Customers should obtain the latest relevant information and data sheets before placing orders and should verify that such information is current and complete. Richtek cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Richtek product. Information furnished by Richtek is believed to be accurate and reliable. However, no responsibility is assumed by Richtek or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Richtek or its subsidiaries.

