Sept 2017

**ON Semiconductor®** 

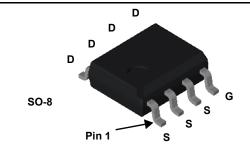


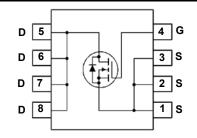
## FDS86242

# N-Channel PowerTrench<sup>®</sup> MOSFET 150 V, 4.1 A, 67 m $\Omega$

## Features

- Max  $r_{DS(on)}$  = 67 m $\Omega$  at V<sub>GS</sub> = 10 V, I<sub>D</sub> = 4.1 A
- Max r<sub>DS(on)</sub> = 98 mΩ at V<sub>GS</sub> = 6 V, I<sub>D</sub> = 3.3 A
- High performance trench technology for extremely low r<sub>DS(on)</sub>
- High power and current handling capability in a widely used surface mount package
- 100% UIL Tested
- RoHS Compliant





## **General Description**

This N -Channel MOSFET is produced using ON Semiconductor's advanced Power T rench<sup>®</sup> process that has been optimized for  $r_{DS(on)}$ , switching per formance and ruggedness.

## **Applications**

- DC/DC converters and Off-Line UPS
- Distributed Power Architectures and VRMs
- Primary Switch for 24V and 48V Systems
- High Voltage Synchronous Rectifier





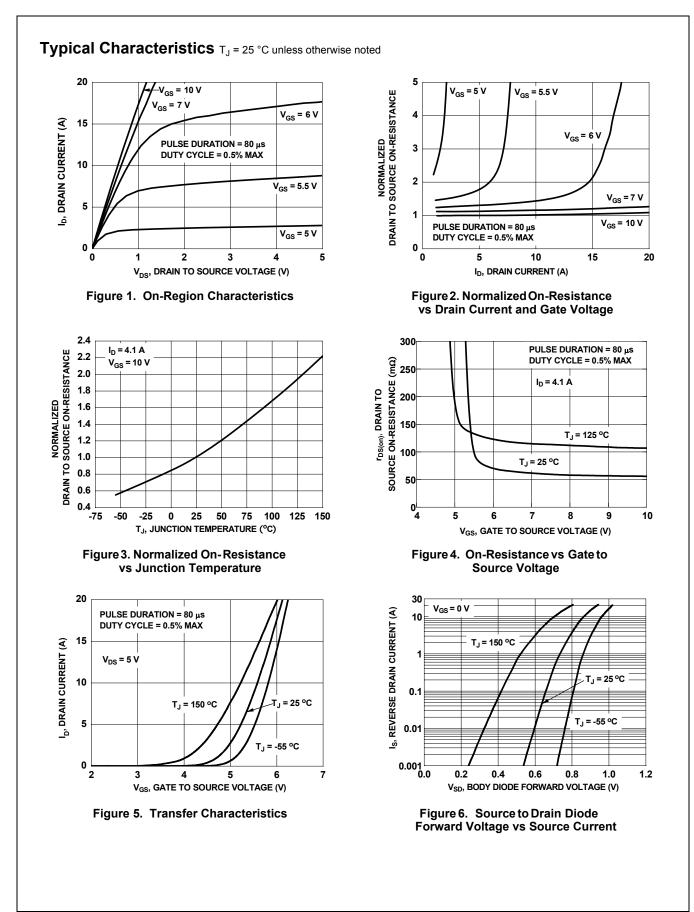
## MOSFET Maximum Ratings T<sub>A</sub> = 25 °C unless otherwise noted

| Symbol                            | Para                                 | meter                  |           | Ratings     | Units |
|-----------------------------------|--------------------------------------|------------------------|-----------|-------------|-------|
| V <sub>DS</sub>                   | Drain to Source Voltage              |                        |           | 150         | V     |
| V <sub>GS</sub>                   | Gate to Source Voltage               |                        |           | ±20         | V     |
| ID                                | Drain Current -Continuous            |                        |           | 4.1         | ^     |
|                                   | -Pulsed                              |                        |           | 20          | — A   |
| E <sub>AS</sub>                   | Single Pulse Avalanche Energy        |                        | (Note 3)  | 40          | mJ    |
| P <sub>D</sub>                    | Power Dissipation                    | T <sub>C</sub> = 25 °C | (Note 1)  | 5.0         | w     |
|                                   | Power Dissipation                    | T <sub>A</sub> = 25 °C | (Note 1a) | 2.5         | vv    |
| T <sub>J</sub> , T <sub>STG</sub> | Operating and Storage Junction Tempe | erature Range          |           | -55 to +150 | °C    |

## **Thermal Characteristics**

| $R_{	ext{	heta}JC}$ | Thermal Resistance, Junction to Case    | (Note 1)  | 25 | °C/W |
|---------------------|-----------------------------------------|-----------|----|------|
| $R_{	heta JA}$      | Thermal Resistance, Junction to Ambient | (Note 1a) | 50 | C/W  |

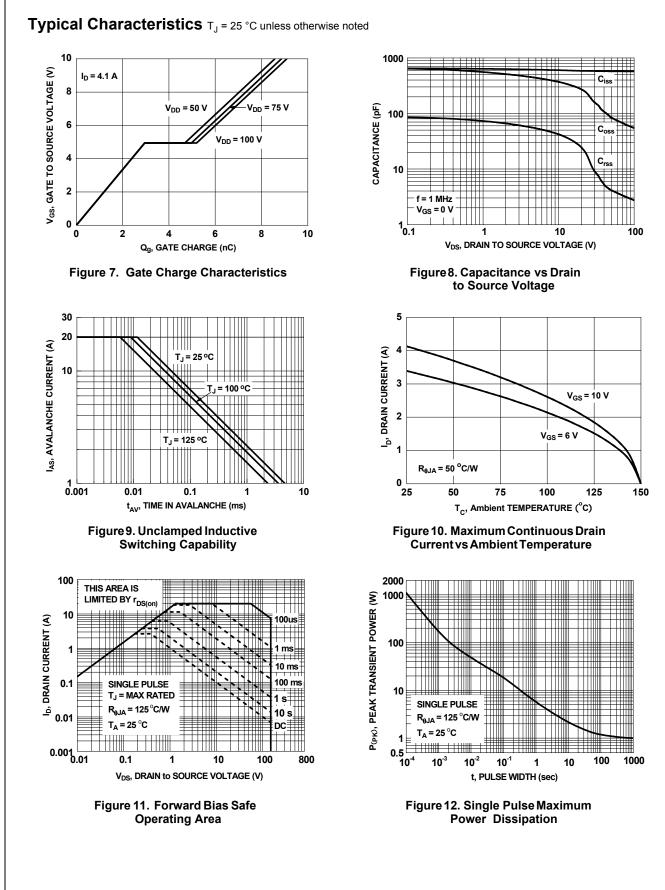
## Package Marking and Ordering Information


| Device Marking | Device   | Package | Reel Size | Tape Width | Quantity   |
|----------------|----------|---------|-----------|------------|------------|
| FDS86242       | FDS86242 | SO-8    | 13 "      | 12 mm      | 2500 units |

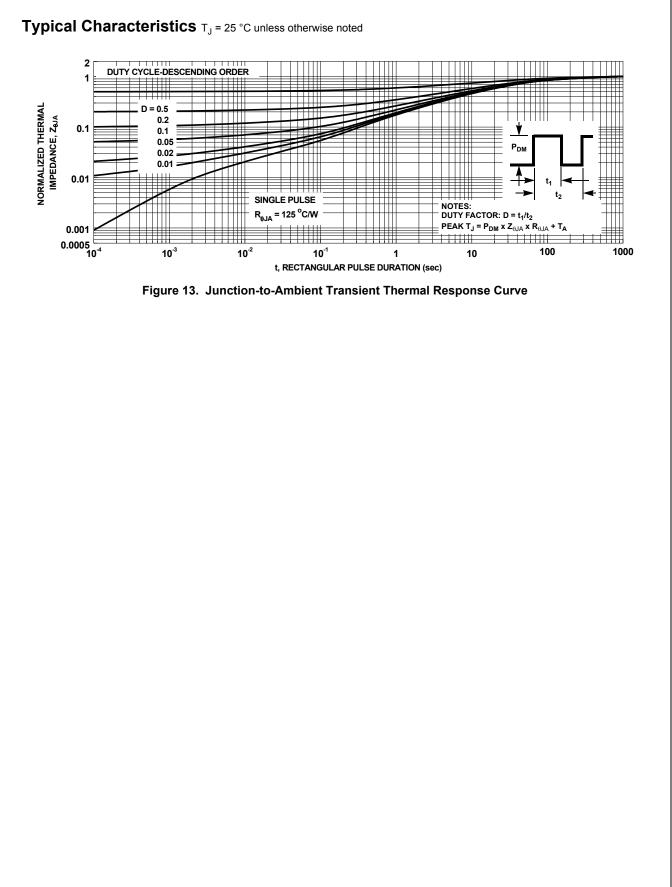
| cteristics         Drain to Source Breakdown Voltage         Breakdown Voltage Temperatur         Coefficient         Zero Gate Voltage Drain Current         Gate to Source Leakage Current         cteristics | $I_D = 250 \ \mu A, V_{GS} = 0 \ V$<br>$I_D = 250 \ \mu A, referenced to 25 \ ^C$<br>$V_{DS} = 120 \ V, V_{GS} = 0 \ V$                                                                                 | 150                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Breakdown Voltage Temperatur<br>Coefficient<br>Zero Gate Voltage Drain Current<br>Gate to Source Leakage Current                                                                                                | $I_D$ = 250 µA, referenced to 25 °C<br>V <sub>DS</sub> = 120 V, V <sub>GS</sub> = 0 V                                                                                                                   | 150                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Breakdown Voltage Temperatur<br>Coefficient<br>Zero Gate Voltage Drain Current<br>Gate to Source Leakage Current                                                                                                | $I_D$ = 250 µA, referenced to 25 °C<br>V <sub>DS</sub> = 120 V, V <sub>GS</sub> = 0 V                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gate to Source Leakage Current                                                                                                                                                                                  |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| stariation                                                                                                                                                                                                      | $V_{GS}$ = ±20 V, $V_{DS}$ = 0 V                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±100                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gate to Source Threshold Voltage                                                                                                                                                                                | V <sub>GS</sub> = V <sub>DS</sub> , I <sub>D</sub> = 250 μA                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Gate to Source Threshold Voltage                                                                                                                                                                                | $I_D = 250 \ \mu$ A, referenced to 25 °C                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                     | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mV/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                 | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 4.1 A                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 56.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Static Drain to Source On Resistance                                                                                                                                                                            | V <sub>GS</sub> = 6 V, I <sub>D</sub> = 3.3 A                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 73.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mΩ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                 | $V_{GS}$ = 10 V, $I_{D}$ = 4.1 A, $T_{J}$ = 125 °C                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Forward Transconductance                                                                                                                                                                                        | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 4.1 A                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Characteristics                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                 | f = 1MHz                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gate Resistance                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Characteristics                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turn-On Delay Time                                                                                                                                                                                              |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                 | V                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rise Time                                                                                                                                                                                                       | $V_{DD} = 75 \text{ V}, \text{ I}_{D} = 4.1 \text{ A},$<br>$V_{CS} = 10 \text{ V}, \text{ R}_{CEN} = 6 \Omega$                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Rise Time<br>Turn-Off Delay Time                                                                                                                                                                                | $V_{DD}$ = 75 V, I <sub>D</sub> = 4.1 A,<br>V <sub>GS</sub> = 10 V, R <sub>GEN</sub> = 6 Ω                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time                                                                                                                                                                   | $V_{GS}$ = 10 V, $R_{GEN}$ = 6 $\Omega$                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13<br>2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>23<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns<br>ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge                                                                                                                                              | $V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$<br>$V_{GS} = 0 \text{ V to } 10 \text{ V}$                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13<br>2.8<br>8.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>23<br>10<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns<br>ns<br>ns<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge                                                                                                                         | $V_{GS} = 10 \text{ V},        $                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13<br>2.8<br>8.9<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>23<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ns<br>ns<br>ns<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge<br>Gate to Source Charge                                                                                                | $V_{GS} = 10 \text{ V},  \text{R}_{GEN} = 6 \Omega$<br>$V_{GS} = 0 \text{ V to } 10 \text{ V}$                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5         13         2.8         8.9         4.9         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>23<br>10<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge<br>Gate to Source Charge<br>Gate to Drain "Miller" Charge                                                               | $V_{GS} = 10 \text{ V},        $                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13<br>2.8<br>8.9<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>23<br>10<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns<br>ns<br>ns<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge<br>Gate to Source Charge                                                                                                | $V_{GS} = 10 \text{ V},        $                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13<br>2.8<br>8.9<br>4.9<br>3.0<br>2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>23<br>10<br>13<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge<br>Gate to Source Charge<br>Gate to Drain "Miller" Charge                                                               | $V_{GS} = 10 \text{ V},        $                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5         13         2.8         8.9         4.9         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10<br>23<br>10<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rise Time<br>Turn-Off Delay Time<br>Fall Time<br>Total Gate Charge<br>Total Gate Charge<br>Gate to Source Charge<br>Gate to Drain "Miller" Charge<br>rce Diode Characteristics                                  | $V_{GS} = 10 \text{ V},        $                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.5<br>13<br>2.8<br>8.9<br>4.9<br>3.0<br>2.0<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>23<br>10<br>13<br>7<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                               | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                 | Temperature Coefficient Static Drain to Source On Resistance Forward Transconductance Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics | Temperature Coefficient $I_D = 250 \ \mu A$ , referenced to $25 \ ^{\circ}C$ Static Drain to Source On Resistance $V_{GS} = 10 \ V$ , $I_D = 4.1 \ A$ Static Drain to Source On Resistance $V_{GS} = 6 \ V$ , $I_D = 3.3 \ A$ VGS = 10 V, $I_D = 4.1 \ A$ , $T_J = 125 \ ^{\circ}C$ Forward Transconductance $V_{DS} = 10 \ V$ , $I_D = 4.1 \ A$ CharacteristicsInput CapacitanceOutput CapacitanceQuery CapacitanceGate Resistance | Temperature Coefficient $I_D = 250 \ \mu A$ , referenced to $25 \ ^{\circ}C$ Static Drain to Source On Resistance $V_{GS} = 10 \ V$ , $I_D = 4.1 \ A$ $V_{GS} = 6 \ V$ , $I_D = 3.3 \ A$ $V_{GS} = 10 \ V$ , $I_D = 4.1 \ A$ , $T_J = 125 \ ^{\circ}C$ Forward Transconductance $V_{DS} = 10 \ V$ , $I_D = 4.1 \ A$ <b>Characteristics</b> $V_{DS} = 10 \ V$ , $I_D = 4.1 \ A$ Input Capacitance $V_{DS} = 75 \ V$ , $V_{GS} = 0 \ V$ ,Output Capacitance $F = 1 \ MHz$ Gate Resistance $V_{DS} = 10 \ V$ , $V_{SS} = 0 \ V$ , | Temperature Coefficient $I_D = 250 \ \mu A$ , reterenced to $25 \ ^{\circ}C$ -10Static Drain to Source On Resistance $V_{GS} = 10 \ V, \ I_D = 4.1 \ A$ 56.3 $V_{GS} = 6 \ V, \ I_D = 3.3 \ A$ 73.8 $V_{GS} = 10 \ V, \ I_D = 4.1 \ A, \ T_J = 125 \ ^{\circ}C$ 107Forward Transconductance $V_{DS} = 10 \ V, \ I_D = 4.1 \ A$ 11CharacteristicsInput Capacitance $V_{DS} = 75 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz$ 570Output Capacitance $f = 1 \ MHz$ 2.9Gate Resistance0.5 | Temperature Coefficient $I_D = 250 \ \mu A, referenced to 25 \ ^{\circ}C$ -10         Static Drain to Source On Resistance $V_{GS} = 10 \ V, \ I_D = 4.1 \ A$ 56.3       67         Static Drain to Source On Resistance $V_{GS} = 6 \ V, \ I_D = 3.3 \ A$ 73.8       98 $V_{GS} = 10 \ V, \ I_D = 4.1 \ A, \ T_J = 125 \ ^{\circ}C$ 107       126         Forward Transconductance $V_{DS} = 10 \ V, \ I_D = 4.1 \ A$ 11         Characteristics       Input Capacitance $V_{DS} = 75 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz$ 570       760         Output Capacitance $V_{DS} = 75 \ V, \ V_{GS} = 0 \ V, \ f = 1 \ MHz$ 64       85         Reverse Transfer Capacitance       0.5       0.5         Characteristics       0.5       0.5 |

2. Pulse Test: Pulse Width < 300  $\mu s,$  Duty cycle < 2.0%. 3. Starting T\_J = 25 °C, L = 1 mH, I\_{AS} = 9 A, V\_DD = 135 V, V\_{GS} = 10 V.

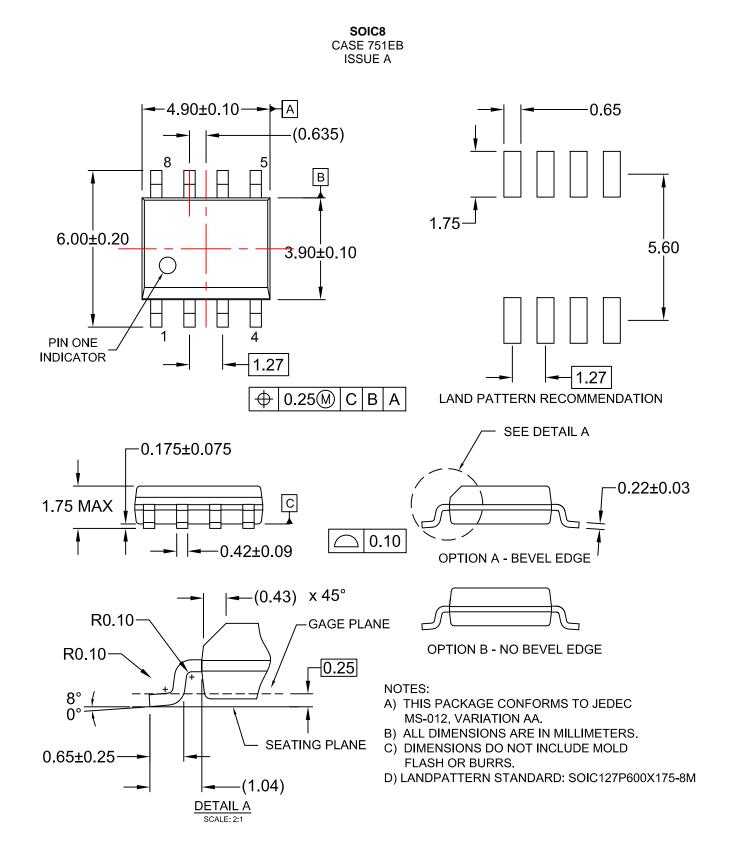
00000


00000




©2010 Semiconductor Components Industries, LLC. FDS86242 Rev. 1

www.onsemi.com






 $\textcircled{\sc 0}$  2010 Semiconductor Components Industries, LLC. FDS86242 Rev. 1







ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such uninten

### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative