A5800 and A5801

BiMOS II Latched Drivers

Last Time Buy

These parts are in production but have been determined to be LAST TIME BUY. This classification indicates that the product is obsolete and notice has been given. Sale of this device is currently restricted to existing customer applications. The device should not be purchased for new design applications because of obsolescence in the near future. Samples are no longer available.

Date of status change: May 2, 2005
Deadline for receipt of LAST TIME BUY orders: October 28, 2005

Recommended Substitutions:

For new customers or new applications, refer to the 6800 and 6801 .

NOTE: For detailed information on purchasing options, contact your local Allegro field applications engineer or sales representative.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, revisions to the anticipated product life cycle plan for a product to accommodate changes in production capabilities, alternative product availabilities, or market demand. The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringements of patents or other rights of third parties which may result from its use.

BiMOS II LATCHED DRIVERS

Dwg. PP-014A

Note the UCN5800A (DIP) and the UCN5800L (SOIC) are electrically identical and share a common terminal number assignment.

ABSOLUTE MAXIMUM RATINGS at $+25^{\circ} \mathrm{C}$ Free-Air Temperature

Output Voltage, $\mathrm{V}_{\text {CE }} \ldots \ldots$.
Supply Voltage, $\mathrm{V}_{\mathrm{DD}} \ldots \ldots \ldots \ldots . . .15 \mathrm{~V}$
Input Voltage Range,
$\mathrm{V}_{\mathrm{IN}} \ldots \ldots \ldots \ldots .0 .0 \mathrm{~F}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ Continuous Collector Current,
$I_{c} \ldots \ldots \ldots \ldots \ldots \ldots . . \quad 500 \mathrm{~mA}$
Package Power Dissipation,
$P_{D} \ldots \ldots \ldots \ldots \ldots \ldots$. See Graph Operating Temperature Range,
$T_{A} \ldots \ldots \ldots \ldots \ldots-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range,
$T_{\mathrm{s}} \ldots \ldots \ldots \ldots \ldots .-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Caution: CMOS devices have input static protection but are susceptible to damage when exposed to extremely high static electrical charges.

The UCN5800A/L and UCN5801A/EP/LW latched-input BiMOS ICs merge high-current, high-voltage outputs with CMOS logic. The CMOS input section consists of 4 or 8 data ('D' type) latches with associated common CLEAR, STROBE, and OUTPUT ENABLE circuitry. The power outputs are bipolar npn Darlingtons. This merged technology provides versatile, flexible interface. These BiMOS power interface ICs greatly benefit the simplification of computer or microprocessor I/O. The UCN5800A and UCN5800L each contain four latched drivers; the UCN5801A, UCN5801EP, and UCN5801LW contain eight latched drivers.

The UCN5800A/L and UCN5801A/EP/LW supersede the original BiMOS latched-input driver ICs (UCN4400A and UCN4801A). These second-generation devices are capable of much higher data input rates and will typically operate at better than 5 MHz with a 5 V logic supply. Circuit operation at 12 V affords substantial improvement over the 5 MHz figure.

The CMOS inputs are compatible with standard CMOS and NMOS circuits. TTL circuits may mandate the addition of input pull-up resistors. The bipolar Darlington outputs are suitable for directly driving many peripheral/power loads: relays, lamps, solenoids, small dc motors, etc.

All devices have open-collector outputs and integral diodes for inductive load transient suppression. The output transistors are capable of sinking 500 mA and will withstand at least 50 V in the OFF state. Because of limitations on package power dissipation, the simultaneous operation of all drivers at maximum rated current can only be accomplished by a reduction in duty cycle. Outputs may be paralleled for higher load current capability.

The UCN5800A is furnished in a standard 14-pin DIP; the UCN5800L and UCN5801LW in surface-mountable SOICs; the UCN5801A in a 22 -pin DIP with $0.400^{\prime \prime}(10.16 \mathrm{~mm})$ row centers; the UCN5801EP in a 28 -lead PLCC.

FEATURES

■ To 4.4 MHz Data Input Rate
■ High-Voltage,
High-Current Outputs \square Output Transient Protection

- CMOS, NMOS,

TTL Compatible Inputs

- Internal Pull-Down Resistors
- Low-Power CMOS Latches
- Automotive Capable

Always order by complete part number, e.g., UCN5801EP

LATCHED DRIVERS

TYPICAL INPUT CIRCUIT

Dwg. EP-010-4A

Dwg. GP-023-1A

5800 and 5801
 BiMOS II LATCHED DRIVERS

ELECTRICAL CHARACTERISTICS at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ (unless otherwise noted).

Characteristic	Symbol	Test Conditions	Limits			
			Min.	Typ.	Max.	Units
Output Leakage Current	$I_{\text {CEX }}$	$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CE}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	-	100	$\mu \mathrm{A}$
Collector-Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT }}$	$\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}$	-	0.9	1.1	V
		$\mathrm{I}_{\mathrm{C}}=200 \mathrm{~mA}$	-	1.1	1.3	V
		$\mathrm{I}_{\mathrm{C}}=350 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=7.0 \mathrm{~V}$	-	1.3	1.6	V
Input Voltage	$\mathrm{V}_{\mathrm{IN}(0)}$		-	-	1.0	V
	$\mathrm{V}_{\mathrm{IN}(1)}$	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$	10.5	-	-	V
		$V_{D D}=10 \mathrm{~V}$	8.5	-	-	V
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ (See Note)	3.5	-	-	V
Input Resistance	$\mathrm{r}_{\text {IN }}$	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$	50	200	-	$\mathrm{k} \Omega$
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$	50	300	-	$\mathrm{k} \Omega$
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$	50	600	-	$\mathrm{k} \Omega$
Supply Current	$I_{\mathrm{DD}(\mathrm{ON})}$ (Each Stage)	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, Outputs Open	-	1.0	2.0	mA
		$V_{\text {DD }}=10 \mathrm{~V}$, Outputs Open	-	0.9	1.7	mA
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Outputs Open	-	0.7	1.0	mA
	$\mathrm{I}_{\mathrm{DD}(\mathrm{OFF})}$ (Total)	$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}$, Outputs Open, Inputs $=0 \mathrm{~V}$	-	-	200	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, Outputs Open, Inputs $=0 \mathrm{~V}$	-	50	100	$\mu \mathrm{A}$
Clamp Diode Leakage Current	I_{R}	$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	-	50	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$	-	-	100	$\mu \mathrm{A}$
Clamp Diode Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=350 \mathrm{~mA}$	-	1.7	2.0	V

NOTE: Operation of these devices with standard TTL or DTL may require the use of appropriate pull-up resistors to ensure a minimum logic " 1 ".

UCN5801EP
(additional pinout diagrams are on next page)

Dwg. PP-015

UCN5801LW

TIMING CONDITIONS
(Logic Levels are V_{DD} and Ground)

A. Minimum Data Active Time Before Strobe Enabled

(Data Set-Up Time)

50 ns

B. Minimum Data Active Time After Strobe Disabled

(Data Hold Time)

50 ns
C. Minimum Strobe Pulse Width ... 125 ns
D. Typical Time Between Strobe Activation and
Output On to Off Transition ... 500 ns
E. Minimum Time Between Strobe Activation and
Output Off to On Transition .. 500 ns
F. Minimum Clear Pulse Width .. 300 ns
G. Minimum Data Pulse Width ... 225 ns

Information present at an input is transferred to its latch when the STROBE is high. A high CLEAR input will set all latches to the output OFF condition regardless of the data or STROBE input levels. A high OUTPUT ENABLE will set all outputs to the OFF condition, regardless of any other input conditions. When the OUTPUT ENABLE is low, the outputs depend on the state of their respective latches.

TRUTH TABLE

$\mathrm{IN}_{\mathbf{N}}$	STROBE	CLEAR	OUTPUT ENABLE	$\mathrm{OUT}_{\mathrm{N}}$	
				t-1	t
0	1	0	0	X	OFF
1	1	0	0	X	ON
X	X	1	X	X	OFF
X	X	X	1	X	OFF
X	0	0	0	ON	ON
X	0	0	0	OFF	OFF

[^0]| 5800 AND 5801 |
| ---: |
| BiMOS II |
| LATCHED DRIVERS |

TYPICAL APPLICATION UNIPOLAR STEPPER-MOTOR DRIVE

Dwg. No. B-1537

UNIPOLAR WAVE DRIVE

UCN5800A
Dimensions in Inches
(controlling dimensions)

Dwg. MA-001-14A in

Dimensions in Millimeters (for reference only)

Dwg. MA-001-14A mm
NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.
3. Lead thickness is measured at seating plane or below.

5800 and 5801
 BiMOS II
 LATCHED DRIVERS

UCN5800L

Dimensions in Inches (for reference only)

Dimensions in Millimeters (controlling dimensions)

Dwg. MA-007-14A mm
NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.

UCN5801A
Dimensions in Inches
(controlling dimensions)

Dimensions in Millimeters (for reference only)

Dwg. MA-002-22 mm
NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.
3. Lead thickness is measured at seating plane or below.

UCN5801EP

Dimensions in Inches
(controlling dimensions)

Dwg. MA-005-28A in
Dimensions in Millimeters (for reference only)

Dwg. MA-005-28A mm

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
2. Lead spacing tolerance is non-cumulative.

This page intentionally left blank

POWER
 INTERFACE DRIVERS

Function	Outp	ings*	Part Number ${ }^{\dagger}$
SERIAL-INPUT LATCHED DRIVERS			
8-Bit (saturated drivers) 8-Bit 8-Bit 8-Bit 8-Bit 8-Bit (constant-current LED driver) 8-Bit (constant-current LED driver) 8-Bit (DMOS drivers) 8-Bit (DMOS drivers) 8-Bit (DMOS drivers)	-120 mA 350 mA 350 mA 350 mA 350 mA 75 mA 120 mA 250 mA 350 mA 100 mA	$\begin{gathered} 50 \mathrm{~V} \ddagger \\ 50 \mathrm{~V} \\ 80 \mathrm{~V} \\ 50 \mathrm{~V} \ddagger \\ 80 \mathrm{~V} \ddagger \\ 17 \mathrm{~V} \\ 24 \mathrm{~V} \\ 50 \mathrm{~V} \\ 50 \mathrm{~V} \ddagger \\ 50 \mathrm{~V} \end{gathered}$	5895 5821 5822 5841 5842 6275 6277 6595 6A595 6B595
10-Bit (active pull-downs)	-25 mA	60 V	6810
12-Bit (active pull-downs)	-25 mA	60 V	5811
16-Bit (constant-current LED driver)	75 mA	17 V	6276
20-Bit (active pull-downs)	-25 mA	60 V	6812
```32-Bit (active pull-downs) 32-Bit 32-Bit (saturated drivers)```	- 25 mA 100 mA 100 mA	$\begin{aligned} & 60 \mathrm{~V} \\ & 30 \mathrm{~V} \\ & 40 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 6818 \\ & 5833 \\ & 5832 \\ & \hline \end{aligned}$
PARALLEL-INPUT LATCHED DRIVERS			
4-Bit	350 mA	$50 \mathrm{~V} \ddagger$	5800
$\begin{aligned} & \text { 8-Bit } \\ & \text { 8-Bit } \\ & \text { 8-Bit (DMOS drivers) } \\ & \text { 8-Bit (DMOS drivers) } \\ & \hline \end{aligned}$	$\begin{aligned} & -25 \mathrm{~mA} \\ & 350 \mathrm{~mA} \\ & 100 \mathrm{~mA} \\ & 250 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} 60 \mathrm{~V} \\ 50 \mathrm{~V} \ddagger \\ 50 \mathrm{~V} \\ 50 \mathrm{~V} \end{gathered}$	$\begin{aligned} & 5815 \\ & 5801 \\ & 6 B 273 \\ & 6273 \\ & \hline \end{aligned}$
SPECIAL-PURPOSE DEVICES			
Addressable 8-Bit Decoder/DMOS Driver Addressable 8-Bit Decoder/DMOS Driver Addressable 8-Bit Decoder/DMOS Driver Addressable 28-Line Decoder/Driver	$\begin{aligned} & 250 \mathrm{~mA} \\ & 350 \mathrm{~mA} \\ & 100 \mathrm{~mA} \\ & 450 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 50 \mathrm{~V} \\ 50 \mathrm{~V} \ddagger \\ 50 \mathrm{~V} \\ 30 \mathrm{~V} \end{gathered}$	$\begin{aligned} & \text { 6259 } \\ & \text { 6A259 } \\ & \text { 6B259 } \\ & 6817 \end{aligned}$

[^1]
[^0]:    $X=$ irrelevant.
    t-1 = previous output state.
    $t=$ present output state.

[^1]:    * Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits. Negative current is defined as coming out of (sourcing) the output.
    $\dagger$ Complete part number includes additional characters to indicate operating temperature range and package style.
    $\ddagger$ Internal transient-suppression diodes included for inductive-load protection.

