BDS/GNSS 全星座定位导航模块

ATGM336H-5NR32

用户手册

杭州中科微电子有限公司

杭州市滨江区江南大道 3850 号创新大厦 10 楼

电话: 0571-28918100

传真: 0571-28918122

网站: http://www.icofchina.com

ATGM336H-5NR32 User Manual

版本更新历史

版本	日期	更新内容
1.0	2020/7/30	初稿

1 功能描述

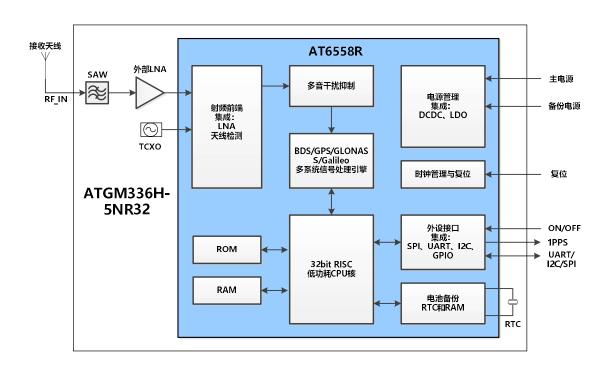
1.1 概述

ATGM336H-5NR32 系列模块是 9.7X10.1 尺寸的高性能 BDS/GNSS 全星座定位导航模块系列的总称。该系列模块产品都是基于中科微第四代低功耗 GNSS SOC 单芯片—AT6558R, 支持多种卫星导航系统,包括中国的 BDS(北斗卫星导航系统),美国的 GPS,俄罗斯的 GLONASS,欧盟的 GALILEO,日本的 QZSS以及卫星增强系统 SBAS(WAAS, EGNOS, GAGAN, MSAS)。AT6558R 是一款真正意义的六合一多模卫星导航定位芯片,包含 32 个跟踪通道,可以同时接收六个卫星导航系统的 GNSS 信号,并且实现联合定位、导航与授时。

ATGM336H-5NR32 本系列模块具有高灵敏度、低功耗、低成本等优势,适用于车载导航、手持定位、可穿戴设备,可以直接替换 Ublox MAX 系列模块。

1.2 产品选购

型号	多模功能	电源	接口	特性		
	GPS BDS GLONASS	2.7V~3.6V 1.8V~3.6V	UART1 UART2	ROM TCXO 天线检测 天线过流保护 内置 SAW 内置 LNA		
ATGM336H-5NR32	• •	• •	• •	• • • • •		


*注1: 上述表格为模块默认配置

1.3 性能指标

- 出色的定位导航功能,支持 BDS/GPS/GLONASS 卫星导航系统的单系统定位,以及任意组合的多系统联合定位,并支持 QZSS 和 SBAS 系统
- 支持 A-GNSS
- 冷启动捕获灵敏度: -148dBm
- 跟踪灵敏度: -162dBm
- 定位精度: 2.5 米 (CEP50)
- 首次定位时间: 32 秒
- 低功耗:连续运行<26mA(@3.3V)
- 内置天线检测及天线短路保护功能

1.4 模块功能框图

1.5 应用领域

- 车载定位与导航
- 手机、平板电脑,手持设备
- 嵌入式定位设备
- 可穿戴设备

1.6 辅助 GNSS (Assisted GNSS、AGNSS)

ATGM336H-5NR32 模块全部支持辅助 GNSS (AGNSS)功能。AGNSS 可以为接收机提供定位必需的辅助信息,比如电文,粗略位置和时间。这些信息可以显著的缩短首次定位时间。具体使用方式见《中科微 AGNSS 解决方案》。

1.7 1PPS

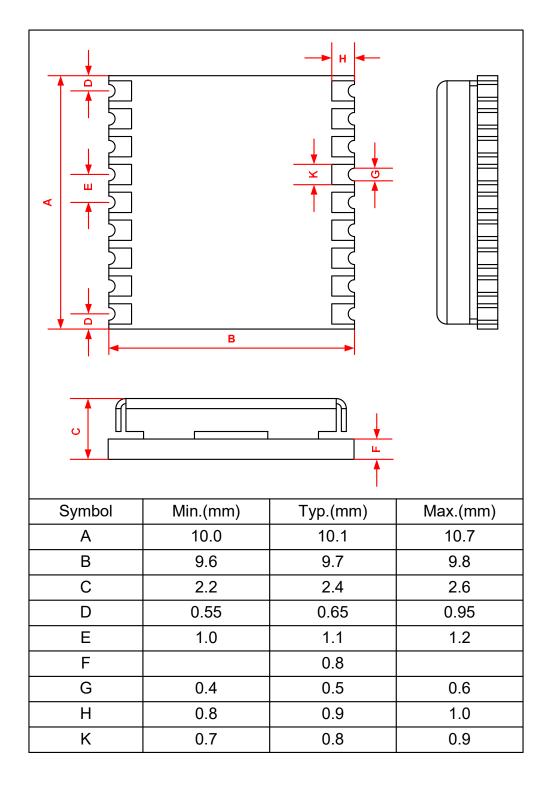
ATGM336H-5NR32 模块支持精确秒脉冲输出,脉冲上升沿与 UTC 时间对齐。

1.8 输出协议

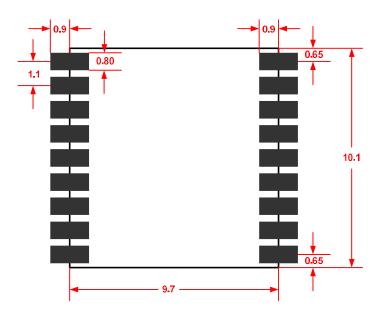
ATGM336H-5NR32 模块通过 UART 作为主要输出通道,按照 NMEA0183 的协议格式输出,具体信息请参照《CASIC 多模卫星导航接收机协议规范》。

1.9 天线

ATGM336H-5NR32 模块支持有源天线与无源天线。


1.10 上位机工具

中科微提供《GNSSToolKit》软件包(Windows 版本、Android 版本),用于定位输出解析与工作模式配置。


2 技术描述

2.1 外观尺寸 (单位: mm)

2.2 PCB layout (单位: mm)

2.3 PIN 排列图

10	GND r	RESET	9
11	RF_IN	VCC	8
12	GND	NC	7
13	NC ATGM336H	→ VBAT	6
14		-	5
15	Reserved Reserved	1PPS	4
16	SDA	RXD	3
17	SCL	TXD	2
18	Reserved	GND	1

2.4 管脚定义

引脚编号	名称	I/O	描述	电气特性
1	GND	I	地	
2	TXD	0	导航数据输出	NMEA0183 协议
3	RXD	I	交互命令输入	配置命令输入
4	1PPS	0	秒脉冲输出	
5	ON/OFF	1	模块关断控制,低电平有效	
6	VBAT	I	RTC 及 SRAM 后备电源	提供 1.5~3.6V 电源以保证
				模块热启动
7	NC			
8	VCC	I	模块电源输入	直流 3.3V±10% ,100mA
9	nRESET	I	模块复位输入, 低电平有效	不用时悬空
10	GND	I	地	
11	RF_IN	I	天线信号输入	
12	GND	I	地	
13	NC			
14	VCC_RF	0	输出电源	+3.3V,可给天线供电
15	保留			悬空
16	SDA	I/O	I ² C 数据接口	悬空
17	SCL	0	I ² C 时钟接口	悬空
18	保留			悬空

2.5 电气参数

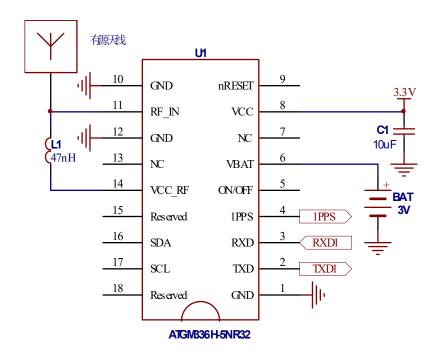
极限参数

D-11-12-22-				
参数	符号	最小值	最大值	単位
模块供电电压(VCC)	Vcc	-0.3	3.6	V
备份电池电压(VBAT)	Vbat	-0.3	3.6	V
数字输入引脚电压	Vin	-0.3	Vcc+0.2	V
最大可承受ESD水平	VESD(HBM)		2000	V

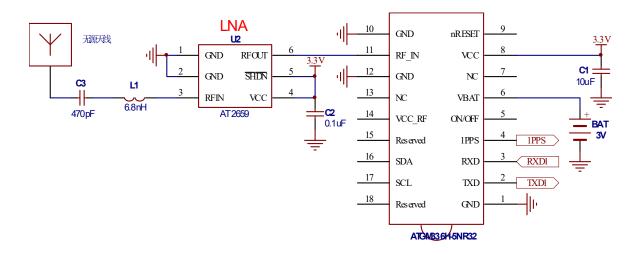
ATGM336H-5NR32 User Manual

运行条件

参数	符号	最小值	典型值	最大值	单位
供电电压	Vcc	1.8	3.3	3.6	V
Vcc峰值电流(不包括天线)	Ipeak			100	mA
备份电源	Vbat	1.5	3.0	3.6	V
备份电源(Vbat)电流	lbat		8		uA
#△) 기 바⊓	Vil			0.2*Vcc	V
输入引脚	Vih	0.7*Vcc			V
	Vol			0.4	
ᄷᄼᅭᆡᅧᄀᆚᄝᆘᇚ	lo=-12mA			0.4	V
输出引脚	Voh	Vcc-0.5			V
	lo=12mA				V
有源天线输出电压	VCC_RF		3.3		V
天线短路保护电流	lant short		50		т Л
电源来自VCC_RF (=3.3V)	lant short		50		mA
天线开路电流	lent one:		4		т Л
电源来自VCC_RF (=3.3V)	lant open		1		mA
天线增益	Gant	15		30	dB


2.6 技术规范

指标	技术参数
信号接收	BDS/GPS/GLONASS/GALILEO/QZSS/SBAS
射频通道数目	三通道射频,支持全星座 BDS、GPS 和 GLONASS 同
	时接收
冷启动 TTFF	≤35s
热启动 TTFF	≤1s
重捕获 TTFF	≤1s
冷启动捕获灵敏度	-148dBm
热启动捕获灵敏度	-156dBm
重捕获灵敏度	-160dBm
跟踪灵敏度	-162dBm
定位精度	<2.5m (CEP50)
测速精度	<0.1m/s (1σ)
定位更新率	1Hz (默认),最大 5Hz
串口特性	波特率范围: 4800 bps ~115200 bps,默认 9600bps,
	8个数据位,无校验,1个停止位
协议	NMEA0183
最大高度	18000m
最大速度	515m/s
最大加速度	4g
后备电池	1.5V ~ 3.6V
电源供电	1.8V ~ 3.6V
GPS&BD 典型功耗	<26mA @3.3V
工作温度	-40 到+85 摄氏度
存储温度	-45 到+125 摄氏度
尺寸	10.1mm×9.7mm×2.4mm
重量	0.6g



2.7 模块应用电路

2.7.1 有源天线应用方案(模块内部提供天线电源、天线检测及短路保护)

2.7.2 无源天线应用方案(模块 RF_IN 输入端增加一级 LNA)

2.8 模块使用注意事项

为了充分发挥 ATGM336H-5NR32 的优良性能,用户在使用本模块时需要注意以下几点:

- 采用低纹波的 LDO 电源,将纹波控制在 50mVpp 以内。
- 模块附近尽量不要走其它频率高、幅度大的数字信号。模块下面全部以地线 填充为佳。
- 天线接口尽量靠近模块的 RF 输入引脚,并注意 50 欧姆的阻抗匹配。
- 模块本身具有有源天线接入、拔出、短路检测电路,同时在天线意外短路时,对天线的供电电流进行限制(50mA),起到保护的作用。在上述 3 种天线端口状态发生变化时,可以从串口输出相应的信息。如

\$GPTXT,01,01,01,ANTENNA SHORT*63

\$GPTXT,01,01,01,ANTENNA OPEN*25

\$GPTXT,01,01,01,ANTENNA OK*35

● 模块使用无源天线时,无法支持天线接入、拔出、短路检测电路,串口输出 语句均为开路。如

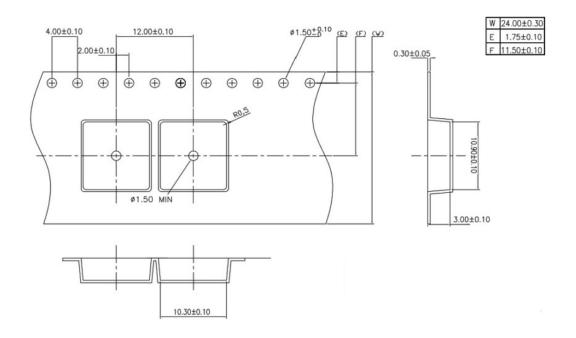
\$GPTXT,01,01,01,ANTENNA OPEN*25

3 可靠性测试与认证

3.1 RoHS 认证

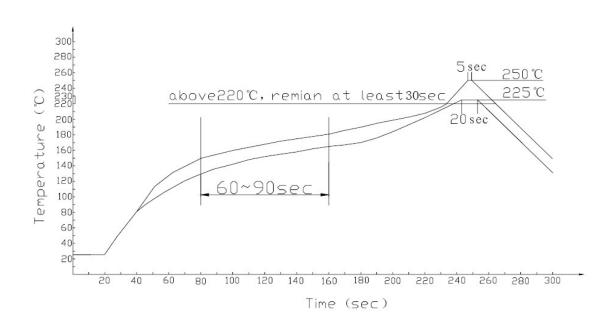
ATGM336H-5NR32系列模块均符合 RoHS 认证。

4 模块传送与焊接


4.1 模块包装

ATGM336H-5NR32 系列模块采用真空卷带包装,具备防潮,防静电等特性,使用过程与业内主要贴片机兼容。按照每盘 1000 片进行包装。

Feed Direction -



4.2 模块传送与存储

4.2.1 防潮等级:

Moisture Sensitivity Level (MSL): 3级 MSL 请参考 IPC/JEDEC J-STD-020 标准。

4.2.2 回流焊曲线:

! 注意

调整平衡时间以保证锡膏溶化时气体的合理化处理。如果PCB板上有过多空隙,可以增加平衡时间。

考虑到产品长时间放置在焊接区(温度在180℃以上),为了防止元器件和底板的损伤,应尽可能缩短放置时间。

! 曲线的重要特征:

上升速度=1~4°C /sec, 25°C to150°C平均 预热温度=140°C to 150°C, 60sec~90sec 温度波动=225°C to 250°C, 大约 30sec 下降速度=2~6°C/sec, to 183°C, 大约 15sec 总时间 = 大约 300sec

4.2.3 静电防护:

ATGM336H-5NR32 模块系列,属静电敏感器件。经常性的静电接触会导致模块产生意外的损坏。除了按照标准的静电防护要求操作外,如下几点需尽量遵循:

- 1)除非PCB GND 已经很好的接地,否则接触模块的第一位置应该是PCB GND。
- 2) 连接天线的时候,请首先连接 GND,再连信号线。
- 3)接触 RF 部分电路时,请不要接触充电电容,请远离可产生静电的器件与设备,如介质天线,同轴电线,电烙铁等。
- 4)为避免通过射频输入端进行电荷放电,请不要接触天线介质裸露部分。 对于可能出现接触天线介质裸露的情况,需要在设计中增加防静电保护 电路。
- 5) 在焊接与射频输入端相连接的连接器,天线,请确保使用无静电焊枪。

5 模块标签

ATGM336H-5NR32的标签包含重要的产品信息,标签内容格式如下:

参考文献

- 1. 《中科微 AGNSS 解决方案》
- 2. 《CASIC 多模卫星导航接收机协议规范》
- 3. 《AT6558R 芯片数据手册》
- 4. 《GNSSToolKit 工具及使用说明》